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ABSTRACT

A formalism is developed in which the nuclear potential is

explicitly worked into the radiation-matrix-elements. The result

is an expansion of the ordinary matrix element in a power series
v hom

of T and --. In each term of this series occurs explicitlycc2

the potential between the scattered particles. With these ex-

pressions the bremsstrahlung of n-He 4-scattering is calculated

if the nuclear potential is assumed to be a square well. Further-

more the bremsstrahlung of n-p-scattering is studied for two kinds

of interaction: a) square well, b) square well plus hard core,

If the parameters of these potentials are chosen so that they give

the same scattering length and effective range, there remains only

a small difference in the bremsstrahlung cross section for the two

types of potentials (some few percent). The shapes of the brems-

strahlung spectrum are equal in both cases. Some structure in the

shape occurs at the virgual bound state of the s-wave. The magni-

tude of the bremsstrahlung cross section is the order 10
-30 - 10-29 cm2

if the energy resolution is 0.2 MeV. So it seems that nuclear brems-

strahlung can be measured.

*Permanent Address: Physikalisches Institut der Universit't
Freiburg/Brsg., Freiburg/Germany.



INTRODUCTION

There have been several investigations on nuclear bremsstrahlung

in recent years . The, main point of view of these authors was

low energy bremsstrahlung and the possibility of measuring 'delay-

times" of the scattered particles due to compound reactions. Our

point of view on nuclear bremsstrahlung is different: We ask

whether the bremsstrahlung cross section is sensitive to certain

features of the nuclear forces. In this paper we especially

investigate the differences in the nuclear bresstrahlung cross

section due to a hard-core-potential on the one hand and a square-

well-potential on the other hand. These potentials are taken in

such a way, that they fit the same low-energy scattering data;

the same scattering length and effective range. The radius of

the hard-core is taken from high-energy scattering experiments.

In order to investigate this question we develop in section I

a method so that the nuclear potential' is explicity worked into

the radiation-matrix elements. What we get for the usual radiation-

matrix element is an expansion in a power series of the parameters

Y and ho) where L is the nuclear mass and hD the photon-
c 2 w ia

energy. This series converges very rapidly in all low- and

medium-energy processes. The point is that each term of this

series contains explicitly the nuclear potential. Therefore a

multipole expansion in the usual way is possible and meaningful

because the nuclear potential restricts the contribution of the

matrix element to nuclear dimensions. This is what one expects,

that even in scattering processes the radiation occurs only near

-2-
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the scattering center. This mathematical method is completely

equivalent to the well-known Blo.ch-Nordsieck' 5 ) -transformation,

but we put it in a lucid light, so that it seems that insight

is deepened. In the second part of the paper wer discuss the

bremsstrahlung of a square-well- and. a square-well-plus hard-core

potential for neutron-proton scattering. The numerical results

are done only for s-scattering, but it is straightforward and

only a numerical task to calculate the contributions of other

partial waves. The expected result is that the cross section

seems to be different by few percent in both cases (the parame-

ters are taken so that the scattering length and effective range

are equal). On the other hand the cross section is of the order

10 -3 - 10-2 millibarn if the energy resolution is taken to be

0.2 MeV and therefore measurable. So the nuclear bremsstrahlung

seems to give no new information about nuclear potentials. However,'

other potentials which are spin and velocity dependent should be "

discussed and their effect on nuclear bremsstrahlung should

be studied.

I.

Il: The Interaction with the Radiation Field.

We first-icoriside ::the,,general:intetactioi fctheotwo partlcles

with the radiation field and develop a form of the interaction

operator which is suitable for practical calulations. We have

+P

*Hint e*- e ] +e + 2.

+ + ()
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where p, and 12 are thi momenta; m1 , m2  the masses; 1 ,F

the magnetic moments; 1I' 02 the 5pin operators and 7I ,PI2

the positions of the two particles. 3 is the' number of protons

and A the number of nucleons in the recoil-nucleus. I is the

wave vector and r the polarization vector of the photon. The

first term in (1). is the • (A is the vector potential)

interaction of the two particles while the second and third terms

reprefent the Pauli-interaction with the radiation field. The
transformation~of (1) to relative ' = -i2) and center-of-

m 12 M1
mass coordinates M = 11 2 ) givesmI + M2

Hint e e M

(2)

.4 + k* e) ei )h

mlm2. -

Where M = I m2  I= ml+M 2  and p, P are.the momenta of

the relative and center-of-mass motion respectively. The matrix

*v
elements of the second term in (2) are small of the order

compared to the- first one, as can easily be seen by writing
P/M , k - a = VCM -

0 •a , where "aP is a length of nuclear dimensions,

vCM the velocity of the center-of-mass and h-w the photonenergy.

This term represents an interaction of the center-of-mass motion

with the "internal" relative motion via the radiation field.
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The center-of-m'ass coefficients e give by integration

over R-space Just the conservation of mo.ntum except for the-

second term in (:)where we get the, additional factor h(M(f
M "

h M(f)' is the momentum of the center-of-mass finalry. Usually

when calculating nuclear radiation transition probabilities this

term can be neglected, since the center of mass is nearly at tdst.

We shall in further developments drop these center-of-mass depend.ent

terms .and use the interaction inip-space:

Hit_ e 4 e M

C L

In calculating transition probabilities for a nucleus, the bound

state wave functions differ from zero only in a region "a" of

nuclear dimensions and one has k • a << 1 . Therefore in this

case a multipole expansion is meaningful; i.e., only the dipDole

and quadrupole transitions occur. That this is still true in

the case of bremsstrahlung, where both initial and final wave

functions are extended over the whole space,' is physically

expected but not easy to see in the formula. We show this in

developing an expression for the matrix element <*fsHint*i>

which is essentially equivalent to the well known Bloch-Nordsieck
4)-

transformation, but more systematic and lucid.
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Let us consider for simplicity the single matrix elements of

the form: "a) <*fI . e-ili>, b)< fle':Ilj> and

c) <*f i" ei i,> separately:

a) By using commutation relations with the hamiltonian of the

system*)

H (4)

we have 4+ I

I>

we note that C _H

*)We assume in this paper that the potential energy V( ) •

does not depend on velocity (n/p) and spin .( ) . It is, however,
straightforward to calculate the modifications of the following
equations if this ..assumption is not made.



and. . .p
Lie9 ,H ) &4 1

NVe + ~ )

where k = is-a unit vector. Equation (5) now r ads

e , + < . + 8)

We see that we have an expansion of our matrix element later. >
vh

in a power series of Y and "The last term in (8),, in,•which "

no potential occurso Is so to say a "rest term". It-.is straight-

forward to calculate all higher order corrections.' The first term

in (8) is Just the result of Bloch-and Nordsieck495)#, We shall

come b ack to this statement later..

b) We can proceed similarly to. the outlined method in evaluating

all other types of matrix.elements.. We get

- -y(~te hJWIW

'I~~H 9v >r- k~~i.
w ' rs-' arc (9



Hore we can check once more the earlier statement that the second

term of (2) is at least of the order v compared to the first one.C.

tww

Ii. Lk a-c

Frqm the last formula we see, that if in the nuclear potential.V(W)

no spin-dependent part iS prersent ', the commutator [R R.,H]. will

..vanish and the firs, nonvanishing term in the matrix element will

be.: of the order N-!2 I* compared to the first term of (8)

and therefore very small. All these expansions (8), (9) ahd ,(10)

of radiation-matrix elements in power series of the quantities

v and -h have the. advantage that the .nuclear potential V(i.)

occurs in the expanded matrix elements. Therefore one can pro-

ceed for short range potentials as in usual nuclear radiation

theory and a multipole expansion becomes meaningful: Only those

regions .of space where the potential differs appreciably from

zero will contribute to the radiation.*.

1.2. Nuclear Bremsstrahlung-Matrix .Elements for .Sin IndDeendent

Nuclear Forzc.es.

In the following we sihall discuss a simple and special model
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for nuclear bremsstrahluing. It is our aim to show in this section

how the formalism works; later in part II of the paper we shall

compare the effect of di-JEferent nuc-lear potentials on the brems-

strahlung. Here we trea-It the two particles without spin and

assume that the internucLeon force is static (not spin-or velocity-

dependent). As we have 5ust remarked following equation (10),

the radiation according to the Pauli term is indeed very small

for such potentials. So we are consistent in neglecting the

Pauli interaction with tt-iLe radiation field. We further like to

study the pure nuclear br-emsstrahlung; i.e., we are not interested

in the bremsstrahlung dut to the coulomb potential. We therefore

consider the scattering ;-f neutral particles by charged nuclei.

Of course, the target nuc leus should not be too large, so that

the retoil will be apprec -able. An examples-for this case would

be the scattering of neut-rons by protons or a-particles. Further-

more we neglect many-body- effects, which may probably be of interest

if the target nucleus is rmore complex and not only a proton. The

,formalism is expected to Ikecome more complex when both particles

are charged, naturally, bocause of interference between coulomb

and nuclear bremsstrahlung. The interaction (3) transformed ac-

cording to (8) and (9) now reads

c i t Aw

V+

k &*d
Mr. k~vA
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We note that one has to use the exponential'factors of .equation, (3)

in formulae (8) and (9). So where we have a vector . in (8).and

(9) itt ehould essentially be replaced by . '

For simplicity we choose here the internucleon force to be

a square-well-interaction. Later in part II we will discuss

another type of interaction. So we have

V = V) fV= V. fir 0 -r!-
Lo for 112)

and

(13)

where p are unit vectors in spherical'basis6 Expanding the

plane waves in (11) in electric and magnetic multipoles, we can

restrict ourself to dipoles, since ka P 10-2 when the energy

of the incoming particles is pf the order 3 MeV (and therefore

the highest photoenergy is - 3 MeV). We see that because of

(13) the first term and the last term in (41) contribute only

electric dipoles. Since the last term is of-the order.

smaller than the first one, it will be neglected*o Let us remark,

that in general the only magnetic intiractions in (11) are coming

from the second and:third term and are Of the order s

th'anthe" domi nant'electric terms as -1ng as theiTnternucleon

potential is spherical symmetric; iLv., V=,V(r)'. This can

easily be proved by writing down, the multipole expansion.for the

plane waves.

*As can be seen from (9) the contribution to the radiation

ebming from the interaction of the center-of-mass-motion and the

relative motion vanishes exactly in dipole-approximationo



We, shall neglect the magnetic, di~,oles too, because in our

case they are of the order vZ 2' (tor P-pi scattering).And

r * (for h-a scattering) smialler than the electric term.

However in the case of resonance scattering (especially for

broad resonances), for instance, one should look at this ap-

prOximation with cautioJI: If,. f or example, we have a broad

p-wave resonance, the. magnetic contributions might bd appreciqblof).

Let us use circular polarized light-quanta

where i is the circular unit vector6) in' the system Witb~
pI

z-axes along the photon propagation vector r. r yeO are

the angles specifying the ':-direction in the laboratory system.

Now we have finaJ~ly

(HintDipeL -P A q( r

The Wave Functions for the Initial and Final States.

Tho iitial wave function characterizes the incoming neutronsO

flying in the z-direction (axis of quantization).

i1th the *symtotic fogrm

(/d f(,~ 0) *kip

*Furthermore one can see from (4) that for static potentials, we'
are discussing, these terms are of the order *Ka' smaller than the
dominant terms; because in the approximation we have H~)=0
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The partial waves are

" (,,-1 8 )

e r)

N is the number of partial waves with phase shifts Ite(K) differing

appreciable from zero.

The final state characterizes neutrons moving in a directionk

f (~r~>u(4))I \44 ~(19)

with the asymtotic condition

We note, that the correct final wave function must have an in-

coming spherical wave7 ). Therefore we have

, . y it Je r)

Va Yrijc()r V. 9 eep A e 'rr)

for r(21)
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wheie K, and f (Kf) are similarly defined as Kt and fe(Ki) .

The matrix element of interest is

* (o(4~)1~(&~4; z4t,4-,..) * , (r-) ,,e )jj(.,z, I,t(, ,)-
*~~ c* (,w, jjl (e* loo k' 1 2 -e,,iei

(22)

The C-coefficients are Clebsch-Gordan coefficients in the nota-

6tion of Rose ). We see from .(21) and (22) that only partial

waves with phase shifts differbnt from zero contribute, as

expected*). We like to note that we have dropped that term'of

th matrix element which contains plane waves on both sides.

because it does not contribute to the cross section. Formula (22)

contains the correlations between the scattered particles and

the emitted photon. Averaging over both directions gives

y 
*L

C~( - ) Ay

(23)

*)This follows in this case from the fact that z ip- -0 Us

, *- Soo
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Here we have used orthogonality of the Yem and D and

unitarity of Clebsch-Gordan coefficients. Introducing the

quantities A and 2 by using (18) and (21) we get

. - P) - . k f ) -. 9 ( o), .%*, tr,'C) Ze,,I.%)-

-~ ~ ~ k Q &)~ k) ( X *) , s)+(~/~ ~~)~

(24)

and

(25

Inserting all factors from (18) and (21) we get for equation (23)

.C(z+,) C (e,, ,, e l ooo) N e-,) C'At-,',,e ,o)L ,
e (26)

Here we have used the relation * The

-bremsstrahlung cross section is defined as the transition

probability between initial and final state divided by t4e
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velocity of the incoming particle.

r (27)

where

(28)

The factor 2 in the density of states p(Ef) is coming from

the spin. L is the length of the normalization cube. The

density of states of the photon is included in the factor3
0 of the transition probability8 ). The sum over the

polarization ? in (28) gives Just the factor 2 since (26)

is independent p (which characterizes the polarization -- see

(14)). Adding all factors we finally get by integration over

dQKf dQ k and using (26)

,C(6t i,, e /ooo)Z / + (2C-O C(ei,/IoUU)L ]

(29)

Let us now consider the cross section (29) in the limit !-0 0

i.e., in the limit of low energy scattering from a weak potential.

In this case only s-scattering occurs and the s-phase shift is

given by
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.where x2 =_ y2 = , Inserting this into the expressions
E o to 2

- and B1  and developing jo(X) t 1 ,

lj(x) = 4, ) now we obtain

(31)

So we have in lowest order for the square of the matrix element

a constant and for the power radiated via bremsstrahlung according

to (29) a dependence like on energy. This is shown schema-ti-

cally in figure 1.

A Pobvr

Energy of Photons

Fig. 1. Power spectrum for nuclear bremsstrahlung

at'very low energies from weak potentials.

1.3. Approximate Bremsstrahlunq Cross Section for n-a Scattering.

We shall now present an approximative calculation for the

bremsstrahlung cross section for neutrons scattered by He4 o The
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approximation made is that the neutron spin is neglected and that

the wave functions for this scattering process are assumed to be

those of a square well with parameters a = 3,21 fermi,

Vo = 19.65 MeV according to the work of Sack, Biedenharn and

Breit9). We used further the experimental phase shifts of Clementel

and Villi1 0 ), where we identified their P3/2 -inverted-doublet phase

shift with our p-phase shift. The energy Ei of the incoming neu-

trons is chosen to be Ei - 1.4 MeV, just above the P3/2 resonance.

The numerical result for the energy-dependent terms of the power

radiated by bremsstrahlung is shown in figure 2.

Using formula (29) one gets a cross section of the order 10-2

millibarn if the energy resolution is chosen dEf = 0.2 MeVo It

is interesting that the bremsstrahlung differential cross section

shows a maximum in the region of the p-resonance. This can be ex-

pected. However, the details should not be taken too seriously,

because the approximations made are crude.

IIo

Comparison of the Effects of Hard-Core and Non-Hard-Core Potentials

on Nuclear BremsstrahlunQ.

We now discuss the possibility of differences in the brems-

strahlung spectrum due to hard-core and non-hard-core potentials.

The formalism developed in section I where the nucleon potential

is explicitly worked into the radiation matrix elements suggests

such a possibility. It turns out that bremsstrahlung cross sec-

tion is different by only a few (5%) percent for both types of

potentials.
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I1.1. Th2 Wave Function ofa Hard-Core Potential.

The type of'hard-core potential we shall investigate is shown

in Fig. 3. The hard-core is represented by the potential, V1

V1

VL/

Fig. 3. The type of hard-core potential which we

investigate. We take, however, the limit V l-OO,

Let us cQnstruct the wave function of this nuclear potential in

the usual way by constructing the wave functions in regions I,

II, III (fig. 3) and fitting their magnitudes and derivatives at

the boundaries. We introduce the following notations

a(, ' r  !Ov =! =Ik "
(32)

For positive Vv and small or negative E the a. become complex.

In the other cases they are real. The equation for the radial

wave function Re is

d e
01 (33)

For the regions shown in figure 3 we have the following solutions

of (33) with regular behavior at the origin:
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- :. ( 4 Je( )(34)

e and ne are the Bessel and Neumann functions with the asym-

totic behavior 11 )

$e/.,) --- -p

.4 
(35)

and

_ L~- ~(e )e7rJ
(36)

The V) are the phase shifts of the e'th partial wave in the

regions indicated by the index V . From (34) we get the following

equations for determining the coefficients Be and Ae due to

the continuity of the wave function

(37)

and"for the logarithmic derivatives
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Analogous equations hold for the boundary I/II. We have there

e& e(,',a) Ap. IA te l ((3 (39)

and

cLye ) }e a'z g - 0 __ C ]
VC 4 .0 C 4 -eaj~d(40)

From the last equation we can determine the phase shift el

Since we are interested in the limiting case Vq -&oo; i.e.,

infinite hard core, we have to look at equation (41) in the

limit a1 -4 ioo. Using (36) we get

6c()ae, 6. - V,(e+I)-W ) Coo6e. If____14
t )C 0 -L

4 (-e,, I-
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Remembering that aI is complex for positive 
V1 , we put

I ~(42).

Inserting this in the arguments 
of and writing this in

exponential factors we find

/ 1 e__o.,C

and therefore we have.4 4v "- I' e,&4 4: )-.i;( 'z,) 46./ 1',-  e ]

r.-v = / =-

(44)

During the last step we kept the range of the hard core,

fixed. From equation (38) we can calculate the other phase

shift IV. We have

• -(tA .- #, 4)A)(45)

<= 0; (<.,) - , A<" <r.)
where fe( A)Z /( )7(46)

6(3c
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II.2. The Wave Function of the -Square-Well Potentia ,s

These wave functions are well known. Although we have

already used them in section I we shall summarize the results

in order to be complete. According to V

figure 4 there are two regions which we

call II and III. The wave functions and -

phase shifts are evaluated with the same -/ /

method as in II i.
Fig0 4. Square well
aotintial. The parameters
a, V are somewhat dif-
ferent from those of the
square well in Fig. 3.

We have

(47)

S(48)

11.3: Calculation of Bremsstrahlung Matrix Elements for the Two

Kinds of Potentials.

As outlined in section I we used the gradient of the potential
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for calculating the dominant terms of the bremsstrahlung matrix

elements. We have for hard core and pure square well respectively.

where F et - L V- (compare equation (15)).

The matrix elements we need are of the type

where Af(Ef) and *i(Ei) are the final and initial wave func-

tions we have constructed in equations (21) and (18) but with

some modifications in the radial part of the partial waves

according to the results of II.1 and IIo2. We further make

some changes in the calculation of the bremsstrahlung cross

section: We neglect the contributions of higher partial waves

(which we included exactly in section I). Therefore we write

for the wave functions

- 4t(~ (52)

This simplifies the calculations in the hard core case, which we

now only do and we note, that the square well is discussed in

section I. Since the angular dependent terms are the same in

both cases (50) we only calculate the radial parts of the matrix
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elements. We need the wave function at the points ' = b, A,

as can be seen from (50). At 'r = b *we have according to (34)

Be 1 C1 (.( 0:~~C e4 )(5
A .e,)

We used (44) in getting this result. 14 is the 4 1 fz)

So we get for the radial part of the matrix element between

the partial waves e(E) re,(Ei)

Inserting the factors a2 , a{ from (32) and (42) and the

coefficients B*c Bet from (47)we get

where / j4 ) i~t (el i)7
li/c)~~( C= jHe6- 1j 6 6
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All quantities in (55) depend on energies E 6r Ei . The Ce

can be taken from (21). The other contribution to the matrix

element is

61(e)V 1 hry- Ad ~~ 4  >a. pa4 = ~- CV, 6 e e~

Here we have used the last of equations (34). By adding (55)

and (57) we get finally for the radial part (of the hard core

plus square well potential contribution to the matrix element).

(58)

We see here, that the only essential difference of thebrems-

strahlung matrix element of case (50.1) (hard core square well)

compared with case (50.2) (pure square well) is contained in

the first term of the bracket [ ] in (58). The functions

(56) describe the contribution to bremsstrahlung from the hard

core. It is interesting to note that the contributions of the

hard core and the square well in (58) are opposite in phase;

i.e., they interfere destructively. Of course, the square well

is accelerating the particles in the opposite direction to that

of the hard core.

It is now easy to write down the radial part of the same

matrix element in the case (50.2). This we do for completeness:
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11.4. Fittinq the Parameters of the Potential.

The range of the hard-core potential 'b" is taken from

high energy scattering data1 2) to be b = 0.4 fermi. The

parameters a , V2 and a, V 2 are in both cases somewhat

different. Let us assume a , V2 to be given (for instance

from low energy scattering data by fitting the scattering length

and effective range), we then determine the parameters a , V2

so that we get for the hard core the same scattering length and

effective range as for the square well potential. In other words,

we expand the s-phase shift in a power series of the energy and

require that the two lowest terms of the series are the same

for both potentials. We then get two equations which determine

the parameters a , V2 in terms of the parameters a , V 2

The phase shifts are given by equations (45) and (48); however,

the s-phase shifts in both cases are simply connected by

(60)

Let us now introduce some new quantities

041 F - (61)
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The analog definitions hold for the barred quantities. So

we have expressed the old quantities a , V2 , E in terms of

the quantities o , y , x . The equation for determining the

unbarred quantities from the barred ones reads

e (62)

Let us now be more specific and restrict ourselves to the

case of neutron-proton scattering. Here the parameters are due

to the results of Blatt and Jackson1 3 ) (1950): a = 2.58 f and

V2 = " 13.3 MeV Therefore we get o I 5.67 MeV, y 1 1.531

El 41.602 0 Keeping these quantities in mind we proceed

and get from (62)

c/~ i~'~(cy~x)xe)~ 4 ~4,yx) i-~4(63), Y) -x

We now can easily derive from (48) that

Ifx- -

444 ~/ )() 4 CA/i oYi (64)

Since we expect y s y , cgy 3 ctg y 0.04 and in the low energy

limit we have << 1 . So we can develop expression (64) and get
y
Y/Y

Now we develop (63) also-since x << 1 and get

-(3)__ _____(66)
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We therefore can write equation (&2) in the form

x

This equation determines the parameters y , o from the

parameters y , io " We now assume that the square well does

not differ much in both cases; i.e., we assume that

= (68)

and 7 are to be determined and are assumed to be small numbers.

It turns out that these assumptions are consistent with the result

we will get for f and 7 . We now remember the definitions (61)

and introduce (68) in (67). Setting the first two coefficients

of the same power in energy E in (67) equal and linearizing

the two equations for f and I we get

,, f+ ,, = C,

where (69)

a,1a, 2-. - Z ,

4 .& /



29

From these equations it is easy to determine f and p and

we get J = 0.129 , = 0.125 which is consistent with our

assumption that these quantities should be small. According

to (68) we have the result that the two square wells are nearly

equali The square well connected with the hard core is somewhat

deeper and somewhat less extended than the other one. -Further

it is easy to see that V~a2 = V2a to a very good approximation.

So we get the same binding (or virtual binding) energy in both cases.

What we have in fact done is to demand equal scattering length. and

effective range for the two potentials we are discussing.
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RESULTS AND DISCUSSION

We have done some numerical work in order to find out differences

in the cross section for bremsstrahlung due to the two types of po-

tential we are discussing. The result is shown in Figure 5. The

two potentials give for s-bremsstrahlung nearly the same shape, and

the cross sections seem to be different in both cases by only a few

percent (-5%). The bremsstrahlung of the hard core potential is

smaller than that of the pure square well. This is due to the de-

structive interference of both potentials. The particles are accele-

rated by the hard core in the opposite direction as they were accele-

rated by the square well. As can be seen from (58) the shape of the

bremsstrahlung spectrum is for both cases nearly the same, because

the shape is essentially determined by the squared factor before the

bracket r ] and this is in both cases nearly the same. The bracket

f J depends only smoothly on energy and is nearly constant over the

energy interval we have considered. However, it seems that the

nuclear bremsstrahlung should be measurable, since, with an energy

resolution of about dEf = 0.2 MeV, we have for the differential

cross section do f 10-2 - i0 3  millibarns*.

At low energies, before the cross section drops to zero, it

shows a maximum (Ef m 50 KeV). This is due to the bigness of

the s-wave function at the nucleus (virtual bound state) and

*It seems useful to note here that the magnitude of the cross

section depends on the energy of the incoming particle. So per-

forming experiments and comparing these with theory, one has to

know several experimental parameters accurately.
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similar to the-maximum of the magnetic photo-disintegration cross

section at the same magnitude of energy.-'

We have done the calculations without spin. This gives good

results as long as we discuss static potentials; ioe., without

spin- and velocity-dependent terms. This statement has been

proved following equation (10). However in the next step one

should discuss this other class of nuclear potentials and try

to find out possible differences in the nuclear bremsstrahlung.

Further it seems to be an advantage to look on bremsstrahlung at

even higher energies, because one can expect there a bigger cross

section since more partial waves contribute. This, however, is

more or less only a numerical task.

I am indebted to Professor R. A. Ferrell for suggesting the

study of nuclear bremsstrahlung and many fruitful discussions.

Further I would like to thank Dr. A. M. Green, Dr. M. Danos

(National Bureau of Standards) and Dr. L. Maximorr (National Bureau

of Standards) for helpful discussions.
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